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A B S T R A C T

Land cover maps play an integral role in environmental management. However, countries and institutes en-
counter many challenges with producing timely, efficient, and temporally harmonized updates to their land
cover maps. To address these issues we present a modular Regional Land Cover Monitoring System (RLCMS)
architecture that is easily customized to create land cover products using primitive map layers. Primitive map
layers are a suite of biophysical and end member maps, with land cover primitives representing the raw in-
formation needed to make decisions in a dichotomous key for land cover classification. We present best practices
to create and assemble primitives from optical satellite using computing technologies, decision tree logic and
Monte Carlo simulations to integrate their uncertainties. The concept is presented in the context of a regional
land cover map based on a shared regional typology with 18 land cover classes agreed on by stakeholders from
Cambodia, Laos PDR, Myanmar, Thailand, and Vietnam. We created annual map and uncertainty layers for the
period 2000–2017. We found an overall accuracy of 94% when taking uncertainties into account. RLCMS
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produces consistent time series products using free long term historical Landsat and MODIS data. The custo-
mizable architecture can include a variety of sensors and machine learning algorithms to create primitives and
the best suited smoothing can be applied on a primitive level. The system is transferable to all regions around the
globe because of its use of publicly available global data (Landsat and MODIS) and easily adaptable architecture
that allows for the incorporation of a customizable assembly logic to map different land cover typologies based
on the user's landscape monitoring objectives

1. Introduction

Land cover and global land cover change are some of the most
important variables affecting all aspects of society (GEOSS, 2005;
Herold et al., 2008b). Timely, comprehensive, accurate information
about land cover and change dynamics play an integral role in in-
forming decision making in all sectors including policy evaluation,
sustainable development, food production, water and energy security,
natural hazards, ecosystem services and natural resource management
(Turner et al., 2007; Bui et al., 2014; Running, 2008; Pettorelli et al.,
2016; Stürck et al., 2014). Land cover is also required as a boundary
condition for many biogeochemical cycling and hydrologic models
(Poortinga et al., 2017). The capacity to monitor and understand
changes in land cover helps countries and regional organizations
identify and understand risk in order to make informed decisions on a
range of issues, from land use planning, water resources management,
carbon accounting, disaster risk reduction, and climate change action
(Simons et al., 2017; Tolentino et al., 2016).

To address these needs, a number of research initiatives have de-
veloped global land cover products to provide information about land
cover dynamics, such as the 1 km spatial resolution GLOBCOVER pro-
ducts (Bontemps et al., 2011), the MODIS global land cover product
(Friedl et al., 2002), University of Maryland global land cover (Hansen
et al., 2000), IGBP DISCover (Loveland et al., 2000), and Global Land
Cover 2000 (Bartholomé and Belward, 2005). Scientists have harmo-
nized the legends and compared these data sets and report limited
compatibility between products due to differences in methodologies,
sensors, and product development requirements (e.g., Giri et al., 2005;
Herold et al., 2008a; Fritz et al., 2010). The 1 km spatial resolution of
these products is too coarse to represent heterogeneous landscapes for
some decision making objectives. An assessment of the four global
products revealed poor performance in heterogeneous landscapes,
specifically with mixed classes characterized by a mosaic of trees,
shrubs, and herbaceous vegetation (Herold et al., 2008a). Even with
information on differences between these products, there is little in-
formation on the relative utility of these different land cover products
to meet specific land management objectives or evaluate performance
at specific locations. Accuracy assessments have been completed at the
global scale on most products (Scepan, 1999; Mayaux et al., 2006;
MODIS Land Cover Team, 2003), however due to small sample sizes
and associated estimates are not easily down-scaled to reflect local or
regional levels.

There has been a paradigm shift in land cover science, supported by
changes to data access policies that opened the archive of Landsat sa-
tellite images, new moderate resolution data are available with the
launch of new satellites (e.g., Sentinel 2), improvements in time series
analysis algorithms, and accessibility of free cloud computing infra-
structure (Wulder et al., 2018, 2012; Poortinga et al., 2018; Yang et al.,
2017b, 2013; Markert et al., 2018; Azzari and Lobell, 2017). As a result
finer resolution global products are currently being produced from the
Landsat archive, such as the annual global forest loss maps (Hansen
et al., 2013). These provide valuable information about global trends at
a finer spatial resolution. Yet because the land cover classes and asso-
ciated definitions are not tailored to inform policies at national and
local levels, their relative utility is still limited (Herold et al., 2006b;
McCallum et al., 2006). The land cover classes vary between products
and often do not align with national policy objectives, and when classes

are similar the definitions and cover thresholds can still vary con-
siderably (Giri et al., 2005; Jung et al., 2006; McCallum et al., 2006;
Fritz et al., 2010).

Agencies are not inclined to adopt or harmonize the available global
land cover products since their reports and work-flows are built around
specific definitions which cannot easily be changed. Global land cover
mapping initiatives are collaborating across a broad spectrum of the-
matic areas and with a variety of countries to attempt to make global
data more relevant to policy and management applications (Herold
et al., 2008b). Even so countries are more likely to trust and adopt data
that they are generating themselves. At the same time, government and
civil society organizations face challenges and roadblocks that prevent
the effective use of appropriate land cover data for policy making,
planning and other decision contexts (Saah et al., 2019b). A 2015
geospatial needs assessment with decision makers and technical experts
from these organizations within five Lower Mekong countries, namely
Cambodia, Laos PDR, Myanmar, Thailand, and Viet Nam revealed key
institutional and technical impediments, including insufficient com-
mitment to the provision of resources (staff time, computing infra-
structure, etc), building of capacity, and setting up of unrealistically
tight time lines for work for geospatial applications (Saah et al., 2019b).

The concept of primitives

We respond to the need for timely and accurate land cover in-
formation by making the land cover mapping and monitoring process
more accessible and easily adapted to each users’ specific information
needs and land management objectives. Hence, we present both an
approach and a system based on ‘primitives’ to develop and update land
cover products which takes advantage of recent technological advances
including publicly accessible archives of satellite data, free and cloud
computing infrastructure. Our system also adopts the harmonization for
data sets approach developed in the Land Cover Classification System
(LCCS) (Herold and Schmullius, 2004; Herold et al., 2006a) and sup-
ports global capacity building efforts. The RLCMS method is both
flexible and scalable, using biophysical definitions (e.g. forest canopy
cover, tree height, percent impervious area) that are directly mappable
to create land cover assessments. The biophysical information is com-
bined with user defined definitions of those land cover types making it
easily flexible for different agencies and applications, which is difficult
to achieve with traditional land cover mapping methods.

Primitive map layers are a suite of biophysical and end member
maps, such as canopy height and percent canopy cover. Land cover
primitives represent raw information needed to make decisions in a
dichotomous key for land cover typing. For example, to classify a lo-
cation as forest, one may need to know the percent canopy closure.
Percent canopy closure, expressed as a geographic raster dataset, is a
land cover primitive (after land cover “endmembers” suggested by
Gong et al. (2013)). We suggest that this approach to not only be highly
suitable for remotely sensed raster data sets, but also highly flexible in
terms of being able to meet needs of multiple stakeholders. As such,
primitives are conceptualized as key building blocks of our system.

These primitive layers are reassembled to create a final land cover
map product according to a decision logic that results in land cover
classes corresponding to the desired land cover typology. The accuracy
of the primitive maps and the final land cover maps will be assessed
using independent validation data. Finally, we developed accuracy
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assessment techniques appropriate for the novel primitive-based
RLCMS assemblage structure using Monte Carlo simulation methods. In
this study, we adopted best practices of satellite data processing (Young
et al., 2017a) and leveraged free cloud computing technologies
(Gorelick et al., 2017). We present how we constructed those primitives
from our processing pipeline and how primitives are assembled into a
final land cover and uncertainty map. Overall, we present primitives
and the integration of their uncertainties into an agile land cover
mapping system as a key innovation in this study. They serve as
building blocks in the system which makes it modular and also enable
explicit pixel based error quantification in a systematic manner.

To substantiate our claims, we use the Mekong region as a case
study to test the system architecture and performance. We present the
results of the land cover maps created from the shared regional ty-
pology agreed to during the first SERVIR regional land cover mon-
itoring workshop with country stakeholders from Cambodia, Laos,
Myanmar, Thailand, and Viet Nam. SERVIR is a unique partnership
between the U.S. Agency for International Development (USAID) and
the U.S. National Aeronautics and Space Agency (NASA) focused on
bringing space-based technologies to environmental decision makers in
developing regions. Though the RLCMS was developed for the Lower
Mekong countries, the system has been modified for use in nearly any
region and time period.

In the following sections we document our methods, including a
description of the Mekong study area, the computational platform,
system architecture, imagery and image processing, methods to create
the biophysical primitive layers, the assemblage process, uncertainty
propagation, and validation. Then we present the results, main findings
and conclude with a discussion about the implications of this research.

2. Materials and methods

2.1. Study region

The greater Mekong region covers a 1.9 million km2 area, has a
population of 240 million people, and includes the five continental
Southeast Asian countries: Cambodia, Laos, Myanmar, Thailand, and
Vietnam (Fig. 1). In Vietnam, rapid urbanization has put increased
pressure on land and water resource management, with implications for
communities and the ecosystems upon which they rely. Cambodia has
seen one of the most rapid declines in forest cover of any country since
2000. Since the end of military rule, Myanmar has seen swift trans-
formations and development opportunities, creating challenges for land
use and resource management. Lao PDR has experienced forest cover
reductions due to shifting cultivation practices, commercial logging,
and agriculture. In Thailand and across the region, communities live in
flood- and landslide-prone areas that put people and development gains
at risk. The common thread in each of these cases is the land use choices
of countries in the Lower Mekong Region and their implications for
sustainable development.

2.2. Methods overview

There are four phases in the creation of the regional monitoring
system: defining a land cover classification typology, a supervised
classification to create the primitive (or biophysical) layers, the as-
semblage of biophysical layers into a customized land cover map, and
an accuracy assessment. These steps are outlined in Fig. 2.

An annual time series of primitives and their associated prob-
abilities are created from optical satellite data applying machine
learning supervised classification. Primitives were created based on the
user defined typology. Primitives were then post processed to ensure
temporal consistency. The primitives were assembled into a land cover
map with uncertainty estimates with a user defined decision tree and
Monte Carlo simulations. A logical transition table was used to post-
process the data. The final product was validated using a stratified

random sample. We describe the full process in more detail in the fol-
lowing sections.

2.3. Land cover typology

Defining the land cover classes is the first step in producing a land
cover map. The criteria used to develop the land cover classes depend
on user objectives and available monitoring resources. A classification
system, or typology, should be clear, precise, and based upon objective
criteria. It involves defining class boundaries even though transitions
across landscapes are often gradual (Faber-Langendoen et al., 2009;
FGDC, 1977). Robust land cover typologies and definitions are required
for the selection of primitives and to define the assembly logic rules.

Stakeholders in the Mekong region collaboratively defined a shared
land cover typology with 18 land cover classes. They used the FAO
LCCS philosophy and framework (Di Gregorio et al., 2016; Di Gregorio,
2005; Di Gregorio and Jansen, 1998) and the definitions from the In-
ternational GeosphereBiosphere Programme (Loveland and Belward,
1997) to systematically define land cover categories from specific ob-
servable land cover characteristics or attributes, along with their spatial
and temporal relationships. The final typology includes definitions built
with biophysical elements that can be mapped and assembled into a
final land cover map. The classes and definitions include:

• Aquaculture is the farming of aquatic organisms, including fish,
molluscs, crustaceans and aquatic plants. It includes man-made
pond systems within fresh and salt water bodies or temporarily
flooded regions.

• Barren areas are natural and semi-natural lands comprised of ex-
posed soil, sand, and rocks.

• Cropland includes lands with herbaceous and shrubby crops fol-
lowed by harvest and a bare soil period (Loveland and Belward,
1997). This category includes single, mixed, multiple, and seasonal
cropping systems. Examples include cereals, oils seeds, vegetables,
root crops and forages. Tea and coffee plantations are included in
this layer; but orchards, forest croplands, and forest plantations are
not. It also excludes irrigated or flooded rice fields and low land

Fig. 1. The greater Mekong region includes five countries: Cambodia, Lao
People's Democratic Republic, Myanmar, Thailand, and Vietnam.
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paddy fields where rice is intensively planted for more than 1 cycle
per year.

• Deciduous forest lands are dominated by trees> 60% canopy cover
with a tree height above 5m. Deciduous tree species make
up>60% of the total tree cover.

• Evergreen Broadleaf lands are dominated by trees> 60% canopy
cover with a tree above 5m. Dominant tree species are evergreen
broadleaf, and make up> 60% of the total tree cover.

• Flooded forests have fresh water inland habitats with>10% tree
canopy cover, a tree height above 2m, and seasonal or permanent
flooding.

• Grassland areas are lands with herbaceous cover, where wetland
obligate species are scarce.

• Shrublands are lands where the majority of woody vegetation cover
is less than 5m in height and greater than 10% canopy cover. Shrub
species can be evergreen or deciduous.

• Mangroves are coastal sediment habitats with more than 10% woody
vegetation canopy cover and the majority of cover is higher than
2m.

• Mining lands are comprised mostly of exposed soil, sand, or rocks
originating from mining, gravel production, or other human ac-
tivity.

• Mixed forests are have>60% tree canopy cover, tree height is
greater than 5m, and the forest composition is mixed such that no
single forest type makes up> 60% of the total tree cover.

• Orchard and plantation forests include lands cultivated with perennial
crops that reach heights above 5m and occupy the land for long
periods (Blanchez, 1997). Commercial tree crops in the region are
mainly rubber, palm oil, cashew nut, and coconut plantations.

• Rice paddies include irrigated or flooded rice fields and low land
paddy fields where rice is intensively planted for more than 1 cycle
per year (can be 2 or 3 cycles). Rice makes up the majority of ve-
getation cover.

• Snow and ice lands are under snow and/or ice cover throughout the
year.

• Surface Water was defined as open water larger than 30m by 30m
that is open to the sky, including fresh and saltwater (Pekel et al.,
2016).

• Urban and built-up areas were defined as cultural lands covered by
buildings, roads, and other built structures.

• Wetlands are seasonally flooded regions dominated by herbaceous or
shrub vegetation. Wetland obligates are common.

2.4. Methods for creating primitive layers

The land cover maps are developed by combining primitives.
Primitives can be extracted from the definition of each class, which are
provided in the previous section. In the following sections we describe
the feature space and reference data sets used to create the annual
primitive layers for the Mekong product.

2.5. Landsat archive and image processing

We used the USGS Landsat 4, 5, 7, and 8 surface reflectance pro-
ducts in order to have a consistent time-series. The atmospherically
corrected orthorectified surface reflectance data products are hosted in
the Earth Engine data archive. Images from Landsat missions 4, 5 and 7
have been atmospherically corrected using LEDAPS (Masek et al., 2006;
Schmidt et al., 2013; Vermote et al., 1997; Ju et al., 2012), and comes
with band with a cloud, shadow, water and snow mask produced using
CFMASK (Zhu and Woodcock, 2012), as well as a per-pixel saturation
mask. Landsat 8 data have been atmospherically corrected using the
Landsat Surface Reflectance Code (LaSRC) (Vermote et al., 2016;
Holden and Woodcock, 2016; Roy et al., 2016a) and also contains the
data produces by CFMASK. Landsat 7 ETM+ for after the 2003 Scan
Line Corrector failure were not included in the analysis as scan line
effects were found to propagate through the data analysis into the final
product. Discarding Landat 7 left a gap for 2012, as Landsat 5 was
decommissioned in May 2012, whereas Landsat 8 was launched in
2013. The 2012 primitives were created by temporal interpolation
using the Whittaker smoothing algorithm.

Additional image pre-processing was applied since these images are
subject to distortion as a result of sensor, solar, atmospheric, and to-
pographic effects (Young et al., 2017a). In order to produce reliable and
consistent time series it is important to account for these effects. We
applied shadow and cloud removal, a bidirectional reflectance

Fig. 2. Schematic overview of the overall workflow. Training data were collected based on the typology and combined with covariates in the machine learning
algorithm to calculate primitives. The primitives were post processed and used in an accuracy assessment using data obtained from Collect Earth. The accuracy of the
primitives was used in a Monte-Carlo simulation using a decision tree for the classification. The assemblage was post processed. The accuracy of the final product was
assessed using the field data.
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distribution function (BRDF) and topographic correction. We describe
each in the following sections. Then we include the calculations and
derivative list we used to create the full stack of Landsat derived cov-
ariates in the supervised classification model.

2.5.1. Cloud masking
We mask clouds using the pixel-qa band and a cloudScore algo-

rithm. The cloudScore algorithm uses the spectral and thermal prop-
erties of clouds to identify and remove pixels with cloud cover from the
imagery. The algorithm identifies pixels that are bright and cold, then
compares to the spectral properties of snow. The snowscore was also
calculated using the Normalized Difference Snow Index (NDSI) to pre-
vent snow from being masked. The algorithm calculates scaled cloud
scores for the blue, all visible, near-infrared and short-wave infrared
bands and then takes the minimum. The algorithm was described by
Chastain et al. (2019).

2.5.2. Cloud shadow masking
To remove cloud shadows, we used the Temporal Dark Outlier Mask

(TDOM) algorithm (Housman et al., 2018) which identifies pixels that
are dark in the infrared bands but are found to not always be dark in
past and/or future observations. This is done by finding statistical
outliers with respect to the sum of the infrared bands. Next, dark pixels
were identified by using the sum of the infrared bands (NIR, SWIR1,
and SWIR2). The pixel quality attributes generated from the CFMASK
algorithm (pixel-qa band) was also used for shadow masking.

2.5.3. BRDF correction
The nadir view angles of the Landsat satellites cause directional

reflection on the surface which can be described by the bidirectional
reflectance distribution function (BRDF) (Roy et al., 2008, 2017; Gao
et al., 2014; Lucht et al., 2000). We applied the method of Roy et al.
(2016b) to all images in the image collection.

2.5.4. Topographic correction
Topographic correction is a radiometric process to account for il-

lumination effects from slope, aspect, and elevation that can cause
variations in reflectance values for similar features with different ter-
rain positions (Colby, 1991; Riano et al., 2003; Shepherd and Dymond,
2003). We applied the Modified Sun-Canopy-Sensor Topographic Cor-
rection method as described by Soenen et al. (2005). The algorithm
combines the sun-canopy-sensor (SCS) (Gu and Gillespie, 1998) with a
semiempirical moderator (C) to account for diffuse radiation (Justice
et al., 1981; Smith et al., 1980; Teillet et al., 1982). The model contains
physically based corrections that preserve the sun-canopy sensor geo-
metry (SCS, SCS+C) while adjusting for terrain.

2.5.5. Landsat derivatives and annual statistics
The medoid (Flood, 2013) and standard deviation were calculated

for the blue, green, red, nir, swir1, and swir2 bands. We also calculated
the standard deviation of the normalized difference (Eq. (1); Angiuli
and Trianni, 2014) for the nir and swir2, green and swir1, and nir and
red. To represent yearly variability, the medoid of the 20th and 80th
percentile were also included in the yearly composite.

The bands in the composites were used to calculate a series of
covariates. Table Table A.1 provides an overview of covariates used in
the study including the spatial resolution. The letters ND indicate that
the normalized difference between the first and second bands were
calculated, p20 and p80 refer to the 20th and 80th percentile respec-
tively. For some combinations there are more common names such as
Normalized Difference Water Index (NDWI, McFeeters, 1996), Nor-
malized Burn Ratio (NBR, Key and Benson, 1999), Normalized Differ-
ence Snow Index (NDSI, Salomonson and Appel, 2004) and Normalized
Difference Vegetation Index (NDVI, Rouse et al., 1974). The source or
calculation for the other covariates are described in the next para-
graphs.

=
−

+

ND(band1, band2) band1 band2
band1 band2 (1)

Two ratio (R) bands were included; these are calculated by the di-
vision of two bands. This was done for the swir1 and nir and red and
swir1. We also included the Enhanced Vegetation Index (EVI, Eq. (2))
(Jiang et al., 2008) and the Soil-adjusted vegetation index (SAVI, Eq.
(3) using L= 0.5) (Huete, 1988). The Index-based Built-Up Index (IBI)
(Xu, 2008) was calculated using Eq. (4).

=
−

+ − +

EVI 2.5* NIR red
NIR 6*red 7.5*blue 1 (2)

=
+ −

+ +

L
L

SAVI (1 )(NIR red)
NIR red (3)

=

+

+

+

IBI NIR
(NIR red)

green
(green swir1) (4)

The composites were used to calculated the Tasseled Cap transfor-
mation derivatives, using coefficients from Crist and Cicone (1984),
resulting in indices representing “brightness”, “greenness”, “wetness”,
“fourth”, “fifth”, and “sixth”. The Tasseled Cap angles (tcAngle) and
distances (tcDist) were calculated for all pairs of brightness, greenness,
and wetness using Eqs. (5 and 6) (Powell et al., 2010).

=tcAngle(band , band ) atan2( band
band

)1 2
1

2 (5)

= +tcDist(band , band ) band band1 2 1
2

2
2 (6)

2.6. Tree canopy cover and height

Yearly tailor made products mapping fractional tree canopy cover
(TCC) and tree canopy height (TCH) derived from summary statistics of
annual Landsat surface reflectance products and global sub-pixel
training data (Hansen et al., 2011, 2016) were included as covariates to
map the primitive layers. The processing for the creation of these an-
nual products includes temporal smoothing using linear regression and
median filters for inter-annual variation.

2.7. Water persistence metrics

The JRC Global Surface Water Mapping dataset contains maps of the
location and temporal distribution of surface water from 1984 to 2015
and provides statistics on the extent and change of those water surfaces
(Pekel et al., 2016). The mapping layers product consists of 1 image
containing 6 bands (Table 1). It maps different facets of the spatial and
temporal distribution of surface water over the last 32 years.

2.8. Cross correlation between rainfall and vegetation greenness using
MODIS and CHIRPS data

In contrast with natural areas, agricultural fields are often supple-
mented with irrigation water to ensure crop growth and optimize

Table 1
The JRC Global Surface Water Mapping dataset contains 6 layers with in-
formation on different facets of the spatial and temporal distribution of surface
water over the last 32 years.

Band Description

occurrence The frequency with which water was present
change_abs Absolute change in occurrence
change_norm Normalized change in occurrence
seasonality Number of months water is present
transition Categorical classification of change between first and last year
max_extent Binary image containing 1 anywhere water has ever been

detected
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yields. Irrigation practices occur throughout the year, but is most im-
portant during the dry season. Intensive agricultural systems – that
produce two or three crops a year – can be found throughout the
Mekong region depending on water availability. Areas that remain wet
in the dry season are generally greener than the surrounding natural
areas. For natural areas, a high cross-correlation can be expected be-
tween rainfall and greenness. For irrigated agricultural areas this cor-
relation is expected to be less pronounced as these areas remain green
with no rainfall. As such the cross-correlation of EVI MODIS products
(MOD13Q1 and MYD13Q1) (Huete et al., 2002) and precipitation was
calculated. We used the Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) rainfall product, which is a 30+ year quasi-
global rainfall dataset (Funk et al., 2015).

The cross-correlation was calculated in three steps. First, linear re-
gression was applied to the EVI timeseries. Regression coefficients were
used to create a de-trended time-series. This time-series was combined
with CHIRPs. A lag of 30 days was used to account for the delayed
response of vegetation to rainfall. Cross-correlation was calculated
using eq. (7), with the EVI pixel value at time, t, and the rainfall of time
t− 1. It can be noted that the numerator of Eq. (7) is an expression of
the cross-covariance. The data was added as a band to the image stack
of covariates.
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2.9. Representing vegetation phenology using harmonic trend analysis on
MODIS data

Phenology is another important metric that can be calculated and
used to distinguish different types of vegetation. Different phenology
stages of croplands and plant communities can be linked with trends in
EVI values. For example, low EVI values are associated with harvest and
planting when the soil is bare. High EVI values represent peak growing
season.

Harmonic trend analysis was applied to the MODIS EVI time series
products (MOD13Q1 and MYD13Q1) (Shumway and Stoffer, 2011). We
applied one, two, and three harmonic terms. The latter is shown in eq.
(8). Eq. (8) has a linear component (β0 and β1) and six harmonic
coefficients (with β2–β6). For each harmonic, the coefficient of de-
termination (R2) was calculated. Higher R2 values indicate a better fit
between measured and modeled and help to identify areas with 1, 2 and

3 cropping cycles. The coefficient of determination for the different
harmonics were added as bands to the image.

= + + +

+ +

+ +

β β t β πt β πt
β πt β πt
β πt β πt

EVI cos(2 ) sin(2 )
cos(4 ) sin(4 )
cos(6 ) sin(6 )

0 1 2 3

4 5

5 6 (8)

2.10. Terrain indices

We computed terrain properties to be used as inputs in creating
primitives. The five terrain properties include elevation, slope, aspect,
and two aspect derivatives. These include a measure of the deviation
from east (the sine of aspect) and deviation from north (the cosine of
the aspect) (Trimble and Weitzman, 1956; Beers et al., 1966). All ter-
rain indices were derived from the digital elevation data from the 1-arc-
second (approximately 30m ground resolution) SRTM dataset (Farr
et al., 2007).

2.11. Ancillary data sources

Numerous studies have demonstrated the improvement of land
cover mapping results with the use of auxiliary information in the
classification process (Zhu et al., 2016; Khatami et al., 2016; Franklin
and Wulder, 2002). Therefore we included a suite of ancillary data set
in addition to the information derived from optical and elevation
imagery. These included distance to coast, distance to roads, distance to
buildings and ecoregions (Olson et al., 2001). The road and building
maps were created from open street map data (OpenStreetMap
Contributors, 2017).

3. Reference data

We trained the primitive models with reference data that was pro-
vided by our colleagues. Reference data included a combination of
observations that were recorded in the field and using high resolution
imagery and time series information. In total we used over 50,000 data
points. The temporal distribution of the reference datapoints in each
class is specified in Fig. 3. The spatial distribution of points is shown in
Fig. 4.

The reference data of the RLCMS system was collated from our
national partners and additional data was generated from their land
cover products and high resolution imagery. We compiled over 3000

Fig. 3. Number of reference data points per year and class.
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points from our partners data collection efforts for the Global Forest
Resources Assessment (GFRA). This conducted by the Food and
Agriculture Organization (FAO) over period of 2010–2016. We also
used data collected by the Forest Department of Myanmar and Forest
Inventory Planning Division of Lao PDR; these were photo-interpreted
plots that were labeled using VHR image in period 2000–2016 in the
Collect Earth desktop application. Space Technology Institute, Viet
Nam, and WCS, Cambodia, colleagues shared their field data collected
at different sites.

Finally, we augmented these data sets by collecting additional data
with our stakeholder colleagues using the following methodology. We
placed random points within land cover map products (period of 2008-
2012) from the five countries in the Mekong region. All the random
points were placed within 200m from the edge of each land cover
patch. The land cover type of each point were verified using Google
Earth with date associated. We also added supplemental points in land
covers with low coverage and in areas of high model uncertainty using
imagery from Google Earth.

3.1. Machine learning

Each supervised classification was set up to predict the primitive
class of interest. The other land cover classes were aggregated into a
absence class. For example, for the barren primitive we had reference
data that was assigned a label as either barren or not-barren. Another
random training sample of about equal size was created from the other
reference data.

At each point all the potential covariates, the full imagery stack, was
sampled and the coincident values were evaluated in R (R Core Team,
2018; Liaw and Wiener, 2002; Breiman, 2001). The list of possible
covariates is quite large and in some cases provides redundant in-
formation. Selecting a smaller subset reduces the computational ex-
pense of applying the model across the landscape in GEE. Therefore we
selected a subset of model inputs from the full imagery stack by elim-
inating covariates that provided little gains in accuracy. We ran a
principal components analysis on two measures of variable importance,
Mean Decrease Accuracy and Mean Decrease Gini. Mean decrease in

Fig. 4. Spatial distribution of reference data points per land cover class.
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accuracy is the number or proportion of observations that are in-
correctly classified by removing the feature (or values from the feature)
in question from the random forest model. The mean decrease in Gini is
a measure of how each variable contributes to the homogeneity of the
nodes and leaves in the resulting random forest. Variables that result in
nodes with higher purity have a higher decrease in Gini coefficient.
Neither of these metrics provide information about the model perfor-
mance, but rather indicate the predictive power, or importance, of each
metric included in the feature space. Finally the covariates with a pri-
mary component analysis coefficient above zero were selected.

Once the subset of covariates was finalized we applied the random
forest classifier in GEE using the selected image bands. The model was
run in probability mode with 100 trees. The random forest model was
applied to each class (class versus other) for every year. The output of
the random forest model (primitive) is the probability map for the class.

3.2. Temporal smoothing of primitive layers

Temporal smoothing was applied to the primitives for the period
2000–2017 to ensure a consistent time-series. We applied the Whittaker
smoothing algorithm (Whittaker, 1922; Eilers, 2003). The method is
based on penalized least squares and has been successfully applied in
smoothing remote sensing time series (Atzberger and Eilers, 2011a,b;
Zuliana and Perperoglou, 2017; Atkinson et al., 2012). Outputs of the
smoothing algorithm include a time series of smoothed probabilities
and a map of the Root Mean Square error (RMSE) of the fitted curve
versus the original data.

3.3. Assemblage

Finally, we combined all the primitive data layers into a final land
cover map using an assemblage logic. The assemblage is a method for
combining different primitive layers into a land cover map, while in-
corporating users’ land cover definitions and priorities – while si-
multaneously preserving uncertainty information. We use a hier-
archical, decision tree structure (dichotomous key) to prioritize the
integration from the primitive layers. We propagate uncertainty along
the decision tree by running a series of Monte Carlo simulations. During
each iteration of the simulation primitive layers are randomly gener-
ated according to the accuracy of the primitive layer. The simulated
values are then passed through the user-defined decision tree to gen-
erate a series of land cover predictions. These predictions are ag-
gregated to produce a final land cover map. We elaborate on these
details in the sections below.

In comparison with alternative probabilistic classification meth-
odologies, such as Bayesian networks or fuzzy logic, Monte Carlo

sampling over deterministic decision trees enables end-users to con-
struct bifurcating decision trees by posing yes/no land cover-related
questions. Because the primitives are probabilistic, sampling from them
independently within the group-designed decision trees and collecting
aggregate statistics enables retention of as much of uncertainty in the
input data in the final products as possible. Although a Bayesian net-
work approach may provide a clearer uncertainty propagation scheme
to those familiar with probabilistic mathematics, the Monte Carlo
methodology is considered more easily and widely understood and
therefore more appropriate.

3.4. User defined rule set

The assemblage is constructed from the user defined rule set. We
constructed a decision tree to generate the final 17 class typology.
Placement near the top of the tree are more likely to be classified, while
primitives lower in the decision tree are more likely to be masked. The
tree was designed based on the priority of the land cover types but also
the accuracy was taken into consideration.

3.5. Uncertainty propagation with Monte Carlo simulations

We propagate uncertainty through the assemblage process using
information on the standard deviation of each primitive. Each iteration
of the simulated primitive values are then passed through the user-
defined decision tree to generate a series of land cover predictions.
These predictions are aggregated to produce a final land cover map
with associated probabilities for each land cover category specified in
the assemblage.

We start with a random raster with values between −1 and 1. Each
random pixel value is multiplied by the standard deviation of its re-
spective primitive layer to simulate a value that takes into account a
random error value, the error term associated with any modeling pro-
cess. This value is then added to the respective probability primitive
layer. Once we have a simulated value for each primitive, we run these
through the assembly logic rule set. The resulting land cover value is
saved at each iteration. This is used to generate a probability layer for
each land cover end type by summing the final count of each land cover
class and dividing it by the number of iterations. The map land cover is
the mode of the simulated values, and the probability layers represent
the assemblage uncertainty information.

3.6. Post-processing

A temporal categorical smoothing algorithm was applied that in-
corporated rules restricting land cover transitions based on knowledge

Table 2
Transitions between classes. A 0 indicates an illogical transition whereas transitions with a 1 are permitted.

Class A B C D E F G Ma Mi MF O R SL SI SW U W

Aquaculture 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Barren 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1
Cropland 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0
Deciduous Forest 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0
Evergreen Broadleaf 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0
Flooded forest 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1
Grassland 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1
Mangroves 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1
Mining 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0
Mixed Forest 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Orchard or plantation 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1
Rice 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1
Shrubland 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Snow and Ice 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1
Surface Water 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1
Urban and built up 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Wetlands 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1

D. Saah, et al. Int J Appl  Earth Obs Geoinformation 85 (2020) 101979

8



Fig. 5. The box-plots show the distribution of primitives sampled with the reference data. The top image shows the distribution of the primitive, the image on the left
the distribution of all other points. The overlap between the primitive and other categories is shown by the cumulative distribution plots.
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of regional land cover dynamics (Liu and Zhou, 2004; Gómez et al.,
2016; Yang et al., 2016; Hermosilla et al., 2018). Illogical transition are
defined as changes that are unlikely to occur as they violate ecological
rules within a given time period (Cai et al., 2014; Liang and Gong,
2010; Townsend et al., 2009). The temporal frequency of our map
production is annual, therefore we are defining illogical transitions as
those that are unlikely to happen within one year. Illogical changes are

indicated with a 0 in Table 2 whereas logical changes are indicated with
a 1. An iterative approach was used to ensure transitions were propa-
gated through the time-series. Data unmasking was applied to the time-
series in ascending order.

Fig. 6. Root mean square error from the Whittaker smoothing algorithm. The RMSE shows the difference between the original probability and the smoothed one over
the timeseries. Green indicates a high agreement whereas red means more disagreement. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3.7. Assessment

We used a probabilistic based independent validation data set to
assess the accuracy of the map products following the recommendations
and good practice guidance protocols (Congalton, 1991; Stehman and
Czaplewski, 1998; Olofsson et al., 2013, 2014; Foody, 2002). We gen-
erated a regular grid with a 0.75∘ interval over the study area. For the
classes urban, barren, wetlands, grassland, flood forest, snow, man-
groves and aquaculture we created an additional 25 points by applying
a stratified sampling approach on the 2016 land cover map. The points
were uploaded to Collect Earth Online (Saah et al., 2019a), a satellite
image viewing and interpretation system. The data points were then
interpreted using high resolution Digital Globe imagery from 2016. The
deciduous, evergreen and mixed forest classes were merged into a
single forest class since it is hard to differentiate separate forest types
from high resolution satellite imagery. The total number of validation
points were 571.

3.8. Primitive assessment

We examined the relationship between classification confidence and
errors by plotting the label of the reference data vs. the probability
value for each land cover primitive. The reference data was the reserved

10% of the data discussed earlier. We also explore relationships be-
tween accuracy of absence and presence classification by presenting the
cumulative probability of each. Boxplots of the distribution of the pri-
mitive probability along the horizontal axes and the probability dis-
tribution (boxplot) of the other, or absence, class along the vertical axis.
This type of graphic can be used to indicate the separation and mixing
between the class of interest and all other classes. We also assess the
per-pixel level of agreement between the original time series map layers
and the smoothed products. We calculate and report the root mean
squared error between the two vales for each primitive layer.

4. Results

We compared the reference data labels to the estimated primitive
probabilities. Fig. 5 shows the distribution of all land cover classes. On
the horizontal axes the distribution of the primitive probability is
shown whereas the probability distribution of the other classes is shown
in the vertical axis. The cumulative probability of over the horizontal
and vertical axis is indicated with different colors. Basically, this in-
dicates the separation and mixing between the class and all other
classes. It can be seen that there is very sharp split for the land cover
classes barren, cropland, evergreen broadleaf, mangroves, rice, snow
and ice, surface, urban and built up and wetlands. Aquaculture,

Fig. 7. Decision tree used to generate yearly composite. Green arrows indicate that the primitive exceeds the threshold, red arrows when this is not the case. Gray
boxes indicate the final class, blue colored boxes are the final class when the threshold is exceeded. The numbers indicate the thresholds. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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shrubland, deciduous forest and orchards or plantation forest show
more mixing.

The Whittaker smoothing was applied to all primitive time-series
products. Fig. 6 shows the per-pixel level of agreement between the
original timeseries and the smoothed one indicated by the RMSE. Pri-
mitives of Snow and Ice, urban and build-up, rice and flood forest have
generally low RMSE while shrubland, barren and mixed forest show
higher values. Large variability in the temporal signal of the primitive
can indicate rapid changes in land cover or inconsistent performance in
the method. It can be seen that areas with low probabilities, i.e. features
that look very different from the class under consideration have low
error rates and thus perform consistent over the time-series.

The decision tree contains two main branches (Fig. 7). The branch
on the right contains all forest classes, the one on the left all other
classes. The deciduous and evergreen forest classes have a sub category
of mixed forest. Water also has two sub-classes, aquaculture and wet-
lands. Aquaculture, wetlands, and mangroves are included at multiple
locations in the decision tree as they exists as sub-class of an over-
arching class, but also as a separate entity. The numbers indicate the
thresholds that were applied.

The forest layer is created as an intermediate primitive because it is
a combination of two other biophysical primitives. It is defined based
on tree canopy cover, tree canopy height, and a minimum mapping
unit. To create it we applied a threshold of 10% on the canopy cover
primitive. Then patches that met a minimum patch size requirement of
5 connected pixels (roughly 0.5 ha) were selected. These remaining
patches were combined with tree height information which only

patches with a canopy height greater than 5m were classified as forest
lands.

The land cover map and uncertainty layer are shown in Fig. 8, with
the accuracy per land cover class in Fig. 9. From both images it is clear
that snow, rice, barren, mangroves and cropland have high prob-
abilities, whereas aquaculture, shrubland, plantations and the different
forest classes have higher uncertainties. Maps for all years are available
on the SERVIR-Mekong website (https://rlcms-servir.adpc.net/en/
landcover/).

The results of the validation are shown in Fig. 3 . A total of 560
points were included in the analysis and 11 were discarded because no
high resolution imagery was available or the quality was not sufficient
to objectively classify the points. We found an overall accuracy of 0.76
with the highest accuracy for water and the lowest for barren, which
was often confused with cropland. Also flooded forest and shrubland
have a low accuracies. To evaluate if the information in the uncertainty
layer is reliable, we evaluated the accuracy and Kappa using different
thresholds. Fig. 10 shows the accuracy and number of points using a
threshold between 0 and 100. It can be seen that there is an almost
linear increase from 50 until 100. Values increase from 0.76 to 0.94 for
the accuracy, discarding 324 from the analysis. This demonstrates that
the uncertainty layer adds valuable information to the analysis as va-
lidation points with high certainties produce a high accuracy in the
analysis.

Fig. 8. Probability and landcover map.
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5. Discussion

In this work, we have detailed both the architecture and the outputs
of an innovative land cover mapping approach termed as the RLCMS,
which was developed based on key user requirements. This system
produces reliable and accurate land cover maps and is based on

primitives which are key building blocks of this system. Yearly com-
posites were created applying all critical steps of cloud and shadow
removal, BDRF and topographic correction, as suggested by Young et al.
(2017a). These steps were applied on the USGS surface reflectance
products to produce consistent timeseries. We found it critical to use
surface reflectance products rather than top-of-atmosphere as atmo-
spheric distortions often times led to mis-classification. We also found
that it was better to exclude after the scan line correction error, as the
striping effect also led to miss-classifications which were also clearly
visible in the final land cover maps. However, discarding Landsat-7 led
to a data-gap in 2012. Topographic correction was also found to be
critical to account for shadow effects. Other issues we found were high
percentages of cloud cover throughout the region, but specifically for
northern Vietnam. A limitation of the method is that we did not account
for specific sensors’ characteristics. Spectral reflectance characteristics
of Landsat-5, 7 and 8 were all considered consistent. Furthermore, data
with different spatial resolutions were combined as bands in the
random forest classifier. Multi-sensor data fusion or spatial downscaling
technologies might further improve the quality of the composites
(Gevaert and García-Haro, 2015; Gao et al., 2006).

The Monte-Carlo simulation shows that the highest uncertainties
can be found in the mixed forest classes, orchard and plantations,

Fig. 9. Distribution of the probability for the different classes sampled using the validation data. The image shows the mean for all years.

Table 3
Confusion matrix for land cover validation of the year 2016 using high resolution satellite imagery. Accuracy of all classes is 0.76.

SW SI M FF F OP UB C R B W G S A

Surface water 48 1 0 0 0 0 0 0 0 0 0 0 0 1
Snow and Ice 0 21 0 0 1 0 0 0 0 0 0 1 0 0
Mangrove 0 0 27 3 0 3 0 0 1 3 1 0 0 1
Flooded Forest 0 0 2 10 1 1 0 0 0 0 1 0 0 0
Forest 0 1 0 0 111 6 0 0 0 0 0 5 5 0
Orchard or plantation forest 0 0 0 0 21 30 1 9 3 0 0 1 1 0
Urban and built up 0 0 0 0 0 0 22 0 0 1 0 0 0 0
Cropland 0 0 0 0 3 1 5 60 1 7 2 1 1 0
Rice 0 0 0 1 0 0 0 2 14 2 0 0 0 0
Barren 0 0 0 0 0 0 0 0 0 11 0 0 0 0
Wetlands 1 0 0 3 0 0 1 3 1 1 21 0 0 1
Grassland 0 1 0 0 5 1 0 1 0 0 0 18 4 0
Shrubland 0 0 0 0 6 0 0 0 0 0 0 0 13 0
Aquaculture 1 0 4 1 0 0 0 0 0 0 0 0 0 18

Fig. 10. The accuracy and Kappa was calculated using different thresholds for
the probability. The accuracy and Kappa are shown on the left vertical axis, the
number of points included in the analysis on the right vertical axis.
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shrubland and aquaculture (Fig. 9). This is also represented in the
confusion matrix (Table 10) which shows that plantations and shrub are
often mixed with forest. This is in agreement with findings of Herold
et al. (2008a). They compared four global coarse resolution land cover
products and found that mixed tree types and other mixed classes
characterized by a mosaic of trees, shrubs, and herbaceous vegetation
have commission errors. Accuracies reported in this study are higher
than global products (Yang et al., 2017c) which are generally made
from coarser resolution imagery and landscape heterogeneity possibly
lowers performance. Class accuracies are comparable with other studies
that use Landsat as a primary data source (e.g. Huang et al., 2017;
Stibig et al., 2007). It is notable, however, that our study includes ex-
plicit and systematic error quantification.

Reference data collection was found to be quite challenging as the
regional product covers multiple administrative regions. As such, re-
ference data was collected from different sources with variations in
typologies, quality, collection methods and temporal density. For ex-
ample, data from countries were often collected in the field and spe-
cifically focused around the country's typologies. The more generic
reference data collected by international programs and institutions such
as the Food and Agricultural Organization were often collected using
high resolution satellite imagery using data collection software such as
collect earth (Bey et al., 2016; Saah et al., 2019a). For some classes,
some extra reference data was collected applying opportunistic sam-
pling on high resolution on GEE. Applying this method introduces new
uncertainties as points were not randomly selected and often times
cover areas with a rather homogeneous land cover. A large portion of
the reference data used in this study were from 2015 and there was a
bias towards the more recent past due to availability of high resolution
satellite imagery. The reference data also showed an unequal spatial
distribution with higher densities in parts of Vietnam and Thailand.
Other potential sources of error in reference data collection include
subjectivity in reference data labeling (Powell et al., 2004).

The LMR covers a large area with different ecological regions.
Covering these different ecological regions presents a challenge in
terms of reference data collection and training the model. For example,
the central part of Myanmar has a climate vastly different from the
region with mostly dry forests and dry agriculture covering the area.
The phenology and spectral signature of these dryland classes are very
different from the rest of the area whereas reference data was scarce.
Additional reference data collection was needed as dryland agriculture
was often confused with barren and urban whereas dryland forest were
classified as shrub. However, additional training data often introduced
a new error in other geographic regions of the region. We therefore
advise governments, institutes and other users of the RLCMS to apply
the system on smaller more digestible and ecological homogeneous
units.

The smoothing algorithm was applied to remove noise from the
primitives while creating a more consistent time-series. Consistency in
time-series is important when the final purpose of the map is related to
long-term analysis such as the FAO forest resource assessment and IPCC
reporting. However, applying temporal smoothing removes short term
changes from the time-series, which makes it less suitable for purposes
such as change detection. Algorithms such as landtrendr (Kennedy
et al., 2010) and BFAST (Verbesselt et al., 2010) are more suited for
change detection as they are applied directly on the source data. In-
formation from the RLCMS regional product can add valuable in-
formation to these types of analysis. The RMSE, as an output of the
smoothing algorithm provides valuable information on the consistency
of the timeseries and can be used to identify primitives that show a lot
of temporal variability or areas that need more reference data. More
research is needed as different primitives might require specific
smoothing approaches.

It was demonstrated that the Monte-Carlo simulation included in
the assemblage method provides valuable information on the un-
certainty of the final land cover map. It was shown that explicit

quantification of the uncertainty can improve the final accuracy up to
94%. This accuracy is higher than comparable studies of the region
(Spruce et al., 1910) while including more classes with a higher spatio-
temporal resolution. Moreover, in our approach, the assemblage pro-
cess allows a user to tailor the decision tree structure and thresholds to
match a map product's area for a land cover of interest which align with
estimates derived from a statistical inventory. Future work may include
refinements via application of pixel-based approaches while including
distributions functions to the thresholds rather than random numbers
on a single standard deviation for a map. These methods might improve
the quality of the uncertainty maps which can then be used to collect
more reference data in areas with high uncertainty. Repeating this cycle
a number of times is expected to lead to a cumulative improvement of
the final product.

The strength of the system is that it is modular and that each
component can easily be replaced by another one. Thematic primitives
can be combined in a customizable assembly protocol with the users’
specific target land cover classes. In this study we used a single com-
posite for each year, but composites that contain temporally more dense
information could also be used in order to include information on
phenology. The data density could also be increased along the spectral
axes by including more covariates or using sensor fusion techniques.
The random forest model is one of many machine learning methods that
be can easily be replaced by newer methods such as U-Nets. Similarly,
there are many methods for temporal smoothing. Performance might
differ based on the primitive under consideration. All methods and data
are open and free. Collaborative and iterative development of the
system will improve the final results and help policy makers in devel-
oping countries making more informed decision regarding natural re-
source management.

In regards to future work, new satellites from the Sentinel con-
stellation provide open data with higher spectral, spatial and temporal
resolution. Moreover, they include synthetic aperture radar which can
be very useful for tropical countries with persistent cloud cover. Data
fusion techniques and approaches are being increasingly developed and
utilized for land cover mapping (Poortinga et al., 2019).

6. Conclusions

In this study, we described the architecture and demonstrated the
performance of a modular regional land cover mapping system using
primitives as building blocks for constructing land cover maps. We
successfully demonstrated this in the context of the Lower Mekong
Region, and found that our decision tree logic and Monte Carlo simu-
lations lead to an explicit error quantification resulting in a overall 94%
accuracy when taking these errors into account. The architecture is
fully customizable and can include a variety of sensors and machine
learning algorithms to create primitives. Most suitable smoothing ap-
proaches can be selected and applied on a primitive level which are
then combined in a fully customizable assembly protocol. Given these
findings we propose that using primitives and a measure of their un-
certainties can potentially serve as key ingredients in developing flex-
ible land cover monitoring systems which can serve multiple stake-
holders and geographic regions in an internally consistent fashion.
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Appendix A. Covariates

Table A.1 and Table A.2

Table A.1
Covariates used to generate the primitives: (a) Urban and built up, (b) Cropland, (c) Rice, (d) Surface water, (e) Shrubland, (f) Mangrove, (g) Barren, (h) Aquaculture,
(i) Wetlands, (j) Orchard or plantation forest, (k) Grassland, (l) Flooded Forest, (m) Evergreen Broadleaf, (n) Deciduous forest, (o) Mixed forest and (p) Snow and ice.

Resolution a b c d e f g h i j k l m n o p

1 EVI 30 x x x x
2 ND_blue_nir 30 x x x
3 ND_blue_red 30 x
4 ND_blue_swir1 30 x x x x x
5 ND_blue_swir2 30 x x x
6 ND_green_nir 30 x x x x x x
7 ND_green_swir1 30 x x x x x x x x
8 ND_green_swir2 30 x x x x x x
9 ND_nir_red 30 x x x
10 ND_nir_swir1 30 x x
11 ND_nir_swir2 30 x x
12 ND_red_swir1 30 x x x x x x
13 ND_red_swir2 30 x x x x x
14 ND_swir1_swir2 30 x x x x x x x
15 R2_cycle1 500 x x x x
16 R2_cycle2 500 x x x x x
17 R2_cycle3 500 x x x x x x
18 R_red_swir1 30 x x x x x x x x
19 R_swir1_nir 30 x x
20 SAVI 30 x x x x
21 aspect 30 x
22 auto 500 x x x x x x x x
23 blue 30 x x x
24 brightness 30 x x x x
25 change_abs 30 x
26 change_norm 30 x x
27 distBuildings 30 x x x x x x x
28 distCoast 30 x x x x x x x
29 distRoad 30 x x x x x x x x x x
30 distStream 30 x
31 eco 30 x x x x x x x
32 ecoForest 30 x x x x x
33 elevation 30 x x x x x x x x x x x x x x
34 fifth 30 x x x x x x x
35 fourth 30 x x
36 green 30 x x x x x x x
37 greenness 30 x
38 hand 30 x
39 max_extent 30 x
40 nir 30 x x x
41 occurrence 30 x x
42 p20_EVI 30 x x x x
43 p20_IBI 30 x
44 p20_ND_blue_nir 30 x x x
45 p20_ND_blue_red 30 x x
46 p20_ND_blue_swir1 30 x x x x x x x
47 p20_ND_blue_swir2 30 x x x x
48 p20_ND_green_nir 30 x x x x
49 p20_ND_green_swir1 30 x x x
50 p20_ND_green_swir2 30 x
51 p20_ND_nir_red 30 x x x
52 p20_ND_nir_swir1 30 x
53 p20_ND_nir_swir2 30 x
54 p20_ND_red_swir1 30 x x x x x x
55 p20_ND_red_swir2 30 x x x x x x x
56 p20_ND_swir1_swir2 30 x x x x x
57 p20_R_red_swir1 30 x x x x x x x
58 p20_R_swir1_nir 30 x x
59 p20_SAVI 30 x x x x
60 p20_blue 30 x x x
61 p20_brightness 30 x x x x x x x
62 p20_fifth 30 x x x x x
63 p20_fourth 30 x x
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